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The nonlinear propagation of electromagnetic waves in pair plasmas, in which the electrostatic potential
plays a very important but subdominant role of a “binding glue” is investigated. Several mechanisms for
structure formation are investigated, in particular, the “asymmetry” in the initial temperatures of the constituent
species. It is shown that the temperature asymmetry leads to a �localizing� nonlinearity that is qualitatively
different from the ones originating in ambient mass or density difference. The temperature-asymmetry-driven
focusing-defocusing nonlinearity supports stable localized wave structures in 1–3 dimensions, which, for
certain parameters, may have flat-top shapes.
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I. INTRODUCTION

The pair plasmas consisting of only positive- and
negative-charged particles of equal mass have attracted spe-
cial attention mainly because of the astrophysical applica-
tions. In the early universe during the lepton era, ultrarela-
tivistic electron-positron �e-p� pairs contribute largely to the
matter contents of the universe �1�. The gamma-ray bursts—
the most concentrated electromagnetic �em� explosions in the
universe—are believed to be related with the enormous en-
ergy release in compact regions on short time scales. This
energy release leads to the formation of a highly dense opti-
cally thick e-p plasma that expands and cools down remain-
ing relativistic �2�. Such pair plasmas exist also in active
galactic nuclei, in the relativistic jets �3�, and in the pulsar
magnetospheres �4�.

Although there are many laboratory setups in which e-p
pair plasmas are produced �5–8�, one of the most interesting
recent laboratory accomplishments is the successful creation
of “sufficiently” dense pair-ion �pi� plasmas—the first such
plasma consisted of equal-mass positive and negative
fullerene ions �C60

+ and C60
− � �9�.

Unlike the e-p plasma systems �both of the astrophysical
and laboratory variety�, the fullerene plasma has a long
enough life time that the collective behavior peculiar to the
plasma state can be experimentally investigated under con-
trolled conditions. The frequencies associated with the col-
lective modes �plasma frequency, acoustic, and Alfvén fre-
quencies� in such plasmas tend to be rather low. Fortunately,
the group of Hatekayama and Oohara have already made
considerable progress in the production of the hydrogen,
H+-H− plasmas �10,11�. Since the initial report, both the
quality and quantity of this light pair-ion plasma has been
steadily improving �12�.

Since many properties of pair plasmas �a symmetric pair
plasma, for instance, cannot sustain charge separation� are

different from the ordinary electron-ion �e-i� plasma con-
trolled experiments would not only advance fundamental
physics but also create a laboratory to simulate and under-
stand a variety of phenomena taking place in astrophysical
environments. A basic requirement for long time scale ex-
periments will be that the pair annihilation time scale is
many orders of magnitude larger than the plasma period.

Theoretical investigation of pair plasmas have followed
two distinct tracks:

�1� The first track emphasizes the special properties that
stem from the symmetric �pair particles have the same iner-
tia, temperature, etc.� nature of the pair plasma. This is a
highly studied field �13–16� both in the astrophysical as well
as the laboratory contexts. In the e-p plasmas, problems such
as solitary structure formation are studied for instance in
�17�, while for the ion pair plasmas much of the linear as
well as nonlinear work has been devoted to understanding
and interpreting experimental results �see, e.g., �18,19��, in
particular the dispersion curves, described in �9�.

�2� The second group of papers deals with a whole lot of
interesting phenomena that arise because the symmetry of
the pair plasma is mildly broken through some mechanism
which creates some disparity between the constituent fluids
�20–27�. One of the more interesting results of symmetry
breaking is the creation of localized nonlinear structures; the
particular properties of the structure will, naturally, depend
upon the mode of symmetry breaking.

Although it is natural to imagine that pair plasmas have to
be symmetric: that the charges, densities, temperatures, and
masses of positively and negatively charged particles are
equal. But both observations and experiments indicate that
asymmetry may appear, quite naturally, at some stage of their
evolution. In fact asymmetry could also be engineered in
experiments if such a state could show interesting properties.
Different species, not produced in identical conditions �12�,
for instance, could have different thermal speeds �tempera-
tures�. One could also arrange experiments with different
setups for different species when, for instance, there are frac-
tions of heavier or lighter ions or there is a mixture of dif-
ferent mass or temperature species with opposite charges.
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This way one could mimic the conditions pertinent to astro-
physical pair plasmas.

A much investigated example of broken symmetry is a
pair plasma contaminated by a small fraction of charged par-
ticles with different mass �lighter or heavier than main spe-
cies�. Symmetry breaking could also occur when the con-
stituent elements of the two fluids have slightly different
masses or the fluids have slightly different temperatures. As
expected, symmetry breaking induces properties that are dif-
ferent from what pertains for pure pair plasmas. It was
shown in �24–26� that pair plasma, contaminated by the
heavier immobile ions, can support three-dimensional �3D�
stable completely localized structures of em radiation—
“light-bullets,” nondiffracting and nondisspersive em pulses
of pancake shape with large density bunching. Existence of
such localized structures is not possible in pure pair plasmas.
Localized nonlinear structures of em radiation were also
found in a hot e-p relativistic plasma containing a small frac-
tion of cold electron-ion component �27�. Similar behavior
could be expected in doped �or dust-contaminated� fullerene
plasmas in laboratory �28�.

The present paper concentrates on establishing the exis-
tence of em solitonic structures in pair plasmas that could
have been created due to asymmetries of different origin. We
will work out the consequences of two classes of symmetry
breaking; asymmetry arising from a small temperature differ-
ence of the constituent species and the asymmetry arising
from a small difference in the species masses. The plasma is
assumed to be underdense while the em pulse is longer then
characteristic skin length of the plasma. In electron-ion un-
derdense plasma the formation of solitonic structures takes
place only at the frequency close to the plasma frequency
since in such plasma Raman instabilities dominate the pro-
cess of soliton formation. In contrast, in pure symmetric pair
plasma, ponderomotive forces are same for different species
and the excitation of longitudinal waves by the em pulse and
Raman instabilities cannot develop. In slightly asymmetric
pair plasmas the ponderomotive forces acting on positively
and negatively charged species are slightly different; the gen-
eration of weak ambipolar electrostatic potential takes place
and the effects related to Raman instabilities can be ignored
to leading order. This potential plays a fundamental role in
structure formation; it acts as the binding “glue” that concen-
trates matter and radiation in a small region. The nonlinearity
due to temperature asymmetry is found to have a focusing-
defocusing form �different from the nonlinearities originating
in other modes of symmetry breaking� imparting a rich struc-
ture to the corresponding solitons.

II. MODEL

Let us assume that the velocity distribution of particles is
locally a relativistic Maxwellian. Then the dynamics of the
fluid of species � �� represents negative and positive par-
ticles of any origin� is contained in the equations �see for
details �29��:

�

�t
�G�p�� + m0�c2 � �G���� = e�E + �u� � ��� , �1�

whose curl converts the equation of motion to the vortex-
dynamical form:

���

�t
= � � �u� � ��� , �2�

where p�=��m�u� is the hydrodynamic momentum, E and
B are the electric and magnetic fields, and ��= �e� /c�B+�
�G�p� is the so-called generalized vorticity. Here u� de-
notes he hydrodynamic velocity, ��= �1−u�

2 /c2�−1/2= �1
+p�

2 /m0�
2 c2�1/2 is the relativistic factor and m�G��z��

=m�K3�z�� /K2�z�� is the thermally enhanced “effective
mass,” �z�=m�c2 /T��, where K� are the modified Bessel
functions and m� and T� are the particle rest mass and tem-
perature of species �, respectively. For nonrelativistic tem-
peratures �T��m�c2� G�=1+5T� /2m�c2 and for the ul-
trarelativistic temperatures �T��m�c2� G�=4T� /m�c2�1.
Note that the relativistic thermal pressure P� �=�n� /���T� in
the rest frame with n� being the density in the laboratory
frame of the pair fluid� appears through the temperature-
dependent factor G� defined by ��� P�=m�c2n��G�. The
system of Eqs. �1� and �2� is augmented by the equation of
state:

n�z�

��K2�z��
exp�− z�K2�z��� = const�, �3�

which yields the usual results �n��T�
3/2=const in nonrelativis-

tic limit for monoatomic gas and n��T�
3 =const in ultrarelativ-

istic case for photons�.
From Eq. �2� it follows that if the generalized vorticity is

initially zero ���=0� everywhere in space, it will remain
zero for all subsequent times. We assume that before the em
radiation is “switched on” the generalized vorticity of the
system is zero.

And for both species we have the continuity equation:

�n�

�t
+ � · �n�u�� = 0. �4�

To study the nonlinear propagation of intense em wave in
a pair plasma �could be relativistically hot� consisting of
negative and positive ions, we must couple the equations of
motion with Maxwell equations. In terms of the vector �A�
and electrostatic ��� potentials defined by

E = −
1

c

�A

�t
− ��, B = � � A , �5�

the basic equations take the form �Coulomb gauge � ·A=0�:

�2A

�t2 − c2	A + c
�

�t
���� − 4
cJ = 0 �6�

and

	� = − 4
� , �7�

where for the charge and current densities we have, respec-
tively,

� = �
�

e�n�, J = �
�

e�n�u�. �8�
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Our purpose is to explore the possibility of finding local-
ized structures in such plasmas; the equilibrium state is char-
acterized by charge neutrality: n0

+=n0
−, where n0

+ and n0
− are

the positive and negative charge unperturbed densities. The
subscript � hereafter will indicate the negative ��=−� and
the positive ��=+� ions. In terms of dimensionless variables:

p� =
p�

m−c
, n� =

n�

n0
� , T� =

T�

m−c2 , A =
�e�A
m−c2 ,

� =
�e��
m−c2 , r =


−

c
r, t = 
−t , �9�

where 
−= �4
e2n0
− /m−�1/2 is the Langmuir frequency of

negative species, the entire set of defining equations reads as

�2A

�t2 − 	A +
�

�t
���� + �n−�−

�− −
n+�+

�+ � = 0, �10�

	� = n− − n+, �11�

�

�t
�� + ��� = �

�A

�t
� �� , �12�

�n�

�t
+ � · 	n���

�� 
 = 0, �13�

where it was convenient to introduce temperature-dependent
momentum ��=G�p� and relativistic factor ��=G���

=��G��2+ ����2. The equations of state for species then
read as

n�

��f�T��
=

1

G�
�f�T�

��
, �14�

with f�T��= �T�K2�1 /T�� /G��exp�G� /T�� and T�
� as the

equilibrium temperature of species.
We now discuss the propagation �along the z axis� of a

circularly polarized em wave with a mean frequency 
o and
a mean wave number ko

A� =
1

2
�x + iy�A�r�,z,t�exp�ikoz − i
ot� + c.c., �15�

where A�z , t� is a slowly varying function of z and t and x
and y are the standard unit vectors. The choice of circular
polarization is dictated by considerations of simplicity �pre-
vents harmonic generation�. We shall now follow standard
methods to analyze the system. We assume that the longitu-
dinal extent of the pulse is much shorter than its transverse
dimensions ��A /�z���A�. The gauge condition gives us
Az= �i /k0���� ·A��; �Az�� �A��. Consequently the effects re-
lated to Az will turn out to be negligibly small. Then, in the
slowly varying amplitude approximation, the transverse
component of Eq. �12� is integrated yielding

��
� = � A�, �16�

where the constant of integration is set equal to zero since
particle hydrodynamic moments are assumed to be zero at
infinity where the field vanishes. Note that for the longitudi-

nal motion the equations of motion can be treated one di-
mensionally.

Longitudinal dynamics is described by the z component
of the equation of motion �Eq. �12�� and continuity equation.
We note that due to the circular polarization of em wave
��= �1+ �A�2 / �G��2+ ��z

��2 / �G��2�1/2 does not depend on
the fast time 
0

−1 and all the quantities in Eq. �12� vary on a
slow time scale. Therefore, we can introduce the following
variables for convenience: �=z−vgt and �= t, where vg
=k0 /
0 is the group velocity of the em wave packet. Assum-
ing vg� /���� /��, straightforward algebra gives the follow-
ing integral of motion:

G��1 +
�A�2

�G��2 +
��z

��2

�G��2�1/2

− vg�z � � = const�.

�17�

The constants of integration are determined from the bound-
ary conditions: the em fields and plasma momenta vanish at
infinity; they are found to be G�

��T�
��.

In this paper we will deal with transparent plasmas, i.e.,

0�1 and vg�1; such plasmas are found both in astro-
physical and laboratory conditions �nontransparent plasma
case will be discussed in a future publication�. From the
continuity equation we have

n� =
��

�� − pz
, �18�

and straightforward algebra leads to

�� − pz =
G�

�

G��1 �
�

G�
��−1

, �19�

n�

�� =
G�

G�
��1 �

�

G�
��−1

, �20�

where G�
�
G�

��T�
��. Equation �17� yields

pz
� =

G�

2G�
��1 +

�A�2

�G��2 −
G�

�

�G��2	1 �
�

G�
�
2��1 �

�

G�
��−1

�21�

and

�� =
G�

2G�
��1 +

�A�2

�G��2 +
G�

�

�G��2	1 �
�

G�
�
2��1 �

�

G�
��−1

,

�22�

which allow us to write densities fully in terms of potentials
� and A:

n� =
G�

2G�
��	1 +

�A�2

�G��2
	1 �
�

G�
�
−2

+ 1� . �23�

In pure pair plasma with equal temperature species, the
radiation pressure gives equal longitudinal momenta to both
the negative and positive ions �since their effective masses
are equal �G−=G+=G�� and thus does not produce any
charge separation �n−=n+ and �=0� �Berezhiani and Ma-
hajan, 1994�. Berezhiani and Mahajan �1995� showed that
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the situation changes by introducing a small fraction of
heavy ions; with the symmetry breaking between hot elec-
trons and positrons, it becomes possible to generate a finite
�. Several studies showed the existence of electrostatic po-
tential due to the small fraction of different temperature elec-
trons �20,22�; pair plasmas respond similarly �27�.

In �26� it was demonstrated that in the pair-ion plasmas,
for which the symmetry is broken by a slight contamination
�doping� through a heavier immobile ion, the electrostatic
potential is no longer zero and such plasmas can support
stable localized em wave structures even in the nonrelativis-
tic limit appropriate to the current and near future laboratory
experiments. As we will see below, the creation of electro-
static potential is also possible due to the difference in initial
temperatures for different �major constituent� species �yield-
ing the difference in effective masses of species�.

III. FORMATION OF LOCALIZED STRUCTURES IN PAIR
PLASMAS WITH TEMPERATURE ASYMMETRY

We introduce the “asymmetry” through temperature dif-
ference between the two species. The existence of tempera-
ture asymmetry is both experimentally and observationally
justified �see the references given in the introduction� and
leads to different effective masses even though the real
masses are equal �m−=m+�. We would expect that this asym-
metry in effective masses would lead to effects similar to the
ones studied for ordinary e-i plasmas. As a first step we
assume that temperatures are only slightly different

G�
−

G�
+ = � � 1, �24�

where � is close to 1 so that we can have small but finite �.
This assumption lets Eqs. �20� to be written as

n+

�+ =
G+

G�
+ �1 −

�

G�
+ �−1

=
g+

1 − ��̂
, �25�

n−

�− =
G−

G�
− �1 +

�

G�
− �−1

=
g−

1 + �̂
, �26�

where the following normalization g�= �G� /G�
�� and �̂

=� /G�
− were used. Equation �23�, written fully in terms of

potentials �, A, relativistic factors G�, and �, transforms to

n+ =
1

2�1 +
�g+�2 + �2�Â�2

�1 − ��̂�2
� ,

n− =
1

2�1 +
�g−�2 + �Â�2

�1 + �̂�2
� , �27�

where Â=A /G�
−. From now on we will omit the ¯̂ and it

will be assumed that � and A are normalized to G�
−.

For clarity of exposition we will not attempt to analyze
the general case confining ourselves to the two extreme lim-
its: nonrelativistic and super-relativistic temperatures.

To close Maxwell equations, we need to evaluate J�

=n��� /��, the current that goes into Eq. �10�. Using Eqs.

�25� and �26�, and the normalized version of Eq. �16�

g�p�
� = � A , �28�

the expression for the total current is easily derived to be

J� = − � 1

1 − ��
+

1

1 + �
�A . �29�

Using the quasineutrality condition n+=n− �characteristic
length scale of wave L�1� and plugging it into the Eqs. �27�
and taking into account that for a transparent plasma heating
of both fluids is very weak �implying g��1�, we can derive
���1−�����A�2� �where ���A�2��1�. Putting all the pieces
together �evaluating the current, actually the �J�−2A� in our
notation� the nonlinear term in Eq. �10� is expressible as

NL =
1

1 − ��
+

1

1 + �
− 2 � − ���1 − �� − 2��� , �30�

where we do not neglect � with respect to �1−���1. To
complete Maxwell’s equations, we have to relate the electro-
static potential ���1� with its source, in this case, the tem-
perature difference between the species.

A. Super-relativistic temperature pair plasmas

For super-relativistic temperatures T��1 and
G�=4T���1�, g�=T� /T�

� and Eq. �14� reads as

n�

�� = 	T�

T�
�
3

= g�3, �31�

which, in conjunction with Eqs. �25�, �26�, and �31�, yields

g+ =
1

�1 − ���1/2 , g− =
1

�1 + ��1/2 , �32�

evaluating the effective mass G� self-consistently in terms of
�. Straightforward algebra and the use of quasineutrality
condition yields

� �
�A�2

3
��1 − �� − 2��� ,

leading, finally, to

� =
�1 − ��

2

��A�2

�1 + ���A�2�
with � 


2

3
. �33�

We see that ���1−�� when �A�2�1 and �� �1−�� when
�A�2�1 and our estimation of nonlinear term �Eq. �30�� re-
mains valid.

Note that with electrostatic potential defined by Eq. �33�
one learns that the heating or cooling of both fluids is weak
�g+��1+0.5��� , g−��1−0.5���. Also from Eqs. �27� the
species densities come out to be

n� � 1 +
�

2
�A�2. �34�

B. Nonrelativistic temperature pair plasmas

For nonrelativistic temperatures T�, T�
��1 and G�=1

+5T� /2. In this limit the relevant relations are
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n�

�� = 	T�

T�
�
3/2

, g� � 1 +
5

2
�T� − T�

�� �35�

and

� =
G�

−

G�
+ � 1 +

5

2
�T�

− − T�
+� . �36�

Straightforward but tedious algebra leads us to

g� = 1 + H�, �37�

where

H+ =
5

2
�T�

+� and H− = −
5

2
T�

−� . �38�

From Eqs. �37� and �38� we find

g+ + g− � 2 + �� − 1�� ,

g+ − g− �
5

2
�T�

−�1 + �� , �39�

from which

g+
2 − g−

2 � �T�
−�1 + �� , �40�

readily follows. Repeating the same procedure as we adopted
earlier, we may derive

� =
�1 − ��

2

��A�2

�1 + ���A�2�
, with � 


1

2
, �41�

an expression that has the same general form as Eq. �33� that
pertains to the super-relativistic temperature regime. In fact,
the two limits are very similar—for either case the plasma
heating or cooling is weak and the density bunching n��1
+��A�2 /2.

IV. LOCALIZED STRUCTURES

Our interest, here, is to delineate the conditions for the
existence of localized structures in pair plasmas. For the
temperature-asymmetry-driven system, the perpendicular
current is assembled from Eqs. �33� and �41�:

J� � − �2 − ���1 − �� − 2����A

= − �2 −
�1 − ��2

2

��A�2

�1 + ���A�2�2�A , �42�

with �=1 /2 for nonrelativistic temperatures and �=2 /3 for
relativistic temperatures. The final equation for the vector
potential �equivalent to the final defining Eq. �43� of �25��,
derived from Eq. �10� and the preceding expression of cur-
rent, reads

2i
0
�A

��
+

1 + �


0
2

�2A

��2 + ��
2 A

+
�1 − ��2

2

��A�2

�1 + ���A�2�2A = 0,

with �2 

1

4
�1 − ��2 � 1, �43�

where we have redefined m− as m−→m−G�
− that introduces

the effective mass for negatively charged ions. The wave
frequency 
0 satisfies the dispersion relation: 
0

2=k0
2+ �1

+�� �in dimensional units this reads as: 
0
2=k0

2c2+ �1+��
−
2�.

In Eq. �43� the weak dependence on the transverse coordi-
nates has been retained. Note that in spite of the fact that
�A /�����A the second and the third terms can be compa-
rable because of the “transparent plasma” �
0

2�2� condition
�30�.

With self-evident renormalization, Eq. �43� can be written
as

i
�A

��
+

�2A

��2 + ��
2 A + F��A�2� · A = 0, �44�

with the nonlinearity function given by

F��A�2� =
�A�2

�1 + �A�2�2 . �45�

Equation �44� is nothing but the nonlinear Schrödinger equa-
tion �NSE� with a saturating nonlinearity. The saturation
function F��A�2� constitutes a new type; it has an unusual
form in the sense that in the ultrarelativistic case �A�2�1 it
tends to vanish. NSE with such a “vanishing saturation po-
tential” has not been derived and reported for any known
physical system.

From the refractive index �nnl=F�I� �I= �A�2 is the inten-
sity of the em field�, we may deduce that the plasma is self-
focusing �d��nnl� /dI�0� provided I�1 while it becomes
defocusing �d��nnl� /dI�0� for higher intensities �I�1�. For
a localized intense em pulse with a peak intensity Im�1, the
medium, thus, reacts differently to different parts of the em
pulse—focusing the peak region while defocusing the wings.

An immediate consequence of the focusing-defocusing
saturating nonlinearity �originating from the temperature-
asymmetry-driven mechanism� can be illustrated by consid-
ering a modulation instability of quasimonochromatic em
wave. Equation �44� is satisfied by the plane wave solution
A=A0 exp�i�F��A0�2��+c.c.. The standard stability analysis
then shows that a linear modulation with frequency � and
wave number K obeys the dispersion relation �2=K2�K2

−2A0
2�1−A0

2� / �1+A0
2�3� which exhibits a purely growing

mode if A0�1 and K�Kcr=�2A0
2�1−A0

2� / �1+A0
2�3, while

for the ultrarelativistic case �A0�1�, there is no modulation
instability. One can expect that the modulation instability of
moderately intense field �A0�1� in the nonlinear stage will
lead to the break up of the field into solitonlike pulses with a
characteristic length corresponding to the optimum scale of
instability ���2 /Kcr�.

In what follows we investigate the possibility of finding
stable solitonic solutions of Eq. �44� under a variety of con-
ditions. For stationary solitons, we look for solutions that are
“spherical” symmetric: A=A�r�exp�i��, where � is a con-
stant measuring the nonlinear frequency shift. Notice that the
comoving coordinate ��� can be treated on an equal footing
with the spatial coordinate �r��. In terms of the radial vari-
able r= �r�

2 +�2�1/2, Eq. �44� reduces to an ordinary differen-
tial equation that cannot be analytically solved. However, to
better understand the results of possible simulations it is
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helpful to rewrite it �after trivial manipulations� as the equa-
tion describing a “particle” moving with friction in the po-
tential:

d

dr
�	dA

dr

2

+ V�A�� = −
2�D − 1�

rD−1 	dA

dr

2

, �46�

where the effective potential is V�A�=−�A2+ln�1+A2�
−A2 / �1+A2�. Here D�=1,2 ,3� dimension of the problem.

The profile of the potential for different values of the
nonlinear frequency shift � is presented in Fig. 1: �1� curve
“a” in this plot corresponds to ���cr

�1D��0.2162, �2� �
=�cr

�1D� for the curve “b,” and �3� the potential in the range
0����cr

�1D� is given in curve “c.” The solitary solutions
correspond to the effective particle which at the moment r
=0 rests at a point with coordinate Am. Then it rolls down
�r�0�, dissipates “energy” and approaches asymptotically
�r→�� the potential maximum at A=0. It is obvious that
solitary solution cannot exist for ���cr

�1D� while for �
=�cr

�1D� solitary solution does exist.
However in the range covered in c �0����cr

�1D�� solitary
wave solution exists in more than one dimension; the corre-
sponding Am for a given eigenvalue � has to be found nu-
merically. Notice that in one dimension, the particle motion
becomes conservative significantly simplifying the problem.

By demanding V�A�=0 we find the relationship �=ln�1
+Am

2 � /Am
2 −1 / �1+Am

2 �. It can be established analytically that
the growing slope of this relation defines the amplitude of
the soliton Am. Corresponding nonlinear dispersion relation
�=��Am� is exhibited in Fig. 2 �curve one-dimensional
�1D��. One can see from these figures that the 1D solution is
restricted from above: Am�Amcr�1.4506. For small ampli-
tudes Eq. �44� reduces to the standard NSE with a cubic
nonlinearity, and 1D soliton solution can be found analyti-
cally �see �26� for cold plasma case when n=n�T��.

Profiles for large amplitude 1D solitons are exhibited in
Fig. 3. One can see that as A→Amcr��→�cr

�1D�� the profile of
the central part of the soliton flattens and widens at the top.
The existence of flat-top soliton can be explained by the
peculiarities of our focusing-defocusing nonlinearity: the top
part of the pulse with A�1 lies in the defocusing region with
a tendency for diffraction while the wings of the soliton are
in the focusing region preventing the total spread of the
pulse. It is interesting to remark that for ���cr

�1D� the system
supports existence of the dark soliton which is an antisym-
metric function of coordinate with zero intensity at its center.
The dark soliton corresponds to the particle starting at the
right maximum of the curve “c” and going asymptotically
toward the left maximum of the potential. Background inten-
sity of the field �A0� is bounded from below ��A0��Amcr� but
is not restricted from above. Thus, a dark soliton with arbi-
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λλλλ=λλλλ
cr
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2D
3D

A
m

λλλλ

FIG. 2. Nonlinear dispersion relations: the effective eigenvalue
� as a function of Am. The boundary line �dotted� corresponds to
critical value �=�cr

�1D� analytically found only for 1D. The other
three lines represent, respectively, the 1D, 2D, and 3D dispersion
relations.
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FIG. 3. Stationary soliton solution for 1D for different critical
eigenvalues. Plot a corresponds to �cr=0.193 15 with Am=1; plot b
corresponds to �cr=0.215 83 with Am=1.4 and plot c corresponds
to �cr=0.216 22 with Am=1.47, respectively. The plot c represents
the flat-top soliton solution.
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FIG. 4. Stationary soliton solution for 2D for different critical
eigenvalues. Plot a corresponds to �cr=0.127 893 82 with Am=1;
plot b corresponds to �cr=0.178 917 93 with Am=1.4 and plot c
corresponds to �cr=0.202 994 96 with Am=1.57 respectively. The
plot c represents the flat-top soliton solution.
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FIG. 1. The effective potential V vs the amplitude A for different
values of the nonlinear frequency shift �. The curve “a” corre-
sponds to ���cr

�1D��0.2162, the curve “b” has �=�cr
�1D�, and the

curve “c” corresponds to 0����cr
�1D�.
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trarily strong background intensity is possible in 1D. At the
critical frequency shift ��=�cr

�1D�� the dark and bright solitons
can coexist. The coexistence of these solitons is mainly due
to the particular type of nonlinearity encountered in the
present model. Detailed discussion of the properties of dark
solitons is beyond the intended scope of this paper.

In two-dimensional �2D� and 3D, the nonzero friction
force forces the corresponding critical values of � to be less
than �cr

�1D� found for the 1D case. In Fig. 2, the relevant
curves corresponding to numerically obtained dispersion re-
lations for 2D and 3D are displayed. Fundamental solitary
solutions �without zero nodes� are shown in Figs. 4 and 5; in
all these examples one fundamental feature of the soliton
persists, namely, that near the critical eigenvalues, the profile
is endowed with the flat-top shape.

The stability of the obtained solutions can be tested by
applying the Vakhitov and Kolokolov criterion �see �31� and
references therein� according to which the soliton is stable if
�N /���0, where N=�dr�d��A�2 is the soliton energy �pho-
ton number�. We found that in 1D the photon number is
always a growing function of � implying that such solitons
are stable against small perturbations.

In Fig. 6 we show the dependence of the photon number
on the amplitude Am for 2D and 3D solitons. In contrast to
the 1D case, for the soliton to exist in higher dimensions, its
energy N must exceed a certain critical value Ncr. For a 2D
case, the photon number must exceed the threshold energy

Ncr=11.6 for the em wave to enter the self-guiding solitonic
regime. Since �N /�Am�0, then �N /���0 because Am is a
growing function of � �see Fig. 2�. Thus the 2D soliton with
its power above the critical power is always stable. In 3D
�N /�Am�0 provided N�Ncr=236.8 and Am�0.6.

We have demonstrated that the pair plasmas with asym-
metry in initial temperatures of its constituents can support
stable large amplitude localized em wave structures. These
structures, available in arbitrary �1–3� dimensions, have flat-
top shapes for certain range of parameters. This result is
particularly interesting for laboratory conditions. Since even
a small difference �very small� in temperature may be as
effective in symmetry breaking as the Baryonic correction in
early universe, one could readily engineer the laboratory
plasmas to mimic the cosmic conditions.

According to Eq. �34� the total plasma density in the pulse
localization area increases dramatically for relativistically in-
tense pulses. Notice that the general results of the analysis, as
well as Eq. �44� are valid both for ultrarelativistic and non-
relativistic temperatures, and hence warrants applications to
both astrophysical and laboratory plasmas.

V. MASS ASYMMETRY BETWEEN SPECIES

In this section we explore another obvious source of
asymmetry between species—a slight difference in the
masses of positive and negative-charged particles. This
mechanism is different from the one discussed above; the
mass asymmetry is initially given and is fixed as distinct
from the dynamical asymmetry created due to temperature
differences. Such a plasma can be created by the injection of
appropriate ion beams into a trap. Electron-hole plasma in
certain semiconductors or e-p collider plasma created by
slightly different Lorentz factor beams are also possible ex-
amples of such system. Appropriate conditions for such
plasma production could readily appear in dusty plasmas, as
well as in astrophysical jets, and pulsar magnetospheres.

Much of the framework for investigating this mechanism
has already been described. For an unmagnetized plasma,
one can use the dimensionless Eqs. �10� and �11� in which
the Lorentz factors of negatively and positively charged par-
ticles are, respectively, changed to �−= �1+ �p−�2�1/2 and �+

=�−1��2+ �p+�2�1/2, with �=m+ /m− being the ratio of positive
�m+� and negative �m−� particle masses.

For a circularly polarized em wave with wave frequency

0

2=k0
2+ �1+�−1� one can readily show that P�

�= �A �the
equivalent of Eq. �16��. Then the standard treatment for a
transparent plasma �
0� �1+�−1�1/2 , vg=k0 /
0�1� yields
the following relations �equivalent of Eqs. �25�–�27��:

n−

�− =
1

1 + �
,

n+

�+ =
�

� − �
�47�

and

n− =
1

2
�1 +

1 + �A�2

�1 + ��2�, n+ =
1

2
�1 +

�2 + �A�2

�� − ��2� , �48�

leading to
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FIG. 5. Stationary soliton solution for 3D for different critical
eigenvalues. Plot a corresponds to �cr=0.677 472 2 with Am=1;
plot b corresponds to �cr=0.124 519 45 with Am=1.4 and plot c
corresponds to �cr=0.192 222 42 with Am=1.67, respectively. The
plot c represents the flat-top soliton solution.
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FIG. 6. The dependence of the photon number N on the ampli-
tude Am for 2D and 3D. Normalized photon numbers correspond to
N�2D� �solid line� and 10−1N�3D� �dashed line�. For 2D �3D� the
threshold energy for the existence of soliton is Ncr=11.6 �236.8�.
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2i

�A

��
+

�1 + �−1�

2

�2A

��2 + ��
2 A + A�� 1

1 + �
−

1

��� − ��� = 0.

�49�

For small mass differences �=1+� ���1� and for the char-
acteristic length L�1, the potential � may be calculated to
be

� =
��A�2

2�1 + �A�2�
�50�

explicitly displaying that � is proportional to �, i.e., ��1
for ��1 �compare with Eqs. �33� and �41��. Equation �49�
with Eq. �50�, with appropriate normalization of the vari-
ables and inclusion of transverse field variations, constitute
an NLSE �44� with the following saturating nonlinearity
function �� will be absorbed in the normalization�:

F��A�2� = 1 −
1

�1 + �A�2�2 . �51�

Notice that this form of saturation nonlinearity function co-
incides with the one obtained in �24� for e-p plasma with a
small fraction of heavy ions. The reader may consult Ref.
�25� for detailed analysis of the system; here we will just
summarize the salient features. Equation �44� �with Eq. �51��
admits a spherically symmetric solitary wave solution, i.e.,
the “light bullet,” a concentration of mass and energy. And if
the bullet Am�0.7, this bullet is stable. These light bullets
are found to be exceptionally robust �32�: they can emerge
from a large variety of initial field distributions and are re-
markably stable. The total plasma density variation associ-
ated with the soliton �n�A2 is large for A2�1; the solitons
with ultrarelativistic amplitudes create a large concentration
of density.

Thus, the system of pair plasma with slight initial mass
asymmetry between species supports the existence of long
lived objects—light bullets which carry large amounts of
mass and energy exactly the same way as the pair plasmas
with small fraction of heavier ions �24–26�.

The saturating nonlinearity �Eq. �45�� caused by an initial
temperature asymmetry seems to be of a new type �vanishing
for intense pulses�; it differs quite fundamentally from the
one found in �24� �identical to the one originating in a initial
mass asymmetry�. One would think that the temperature
asymmetry, manifesting finally as effective mass asymmetry,
would be qualitatively similar to the initial mass asymmetry.
But it is not so. Fortunately we could trace the cause of the
difference.

The first step in the chain does appear to translate the
temperature asymmetry �see Eq. �24�� into a difference in the
effective masses G�m�. But in reality this mass asymmetry
is dynamical and dependent on the scalar potential �,
meff

+ /meff
− ��1−�+0.5��� while the one originating in an ini-

tial mass asymmetry ��=1+�� is constant in space time and
never leads to heating or cooling. It is of utmost significance
to realize that the electrostatic potential � is important not
only for maintaining the nonlinearity but also to create dy-
namical temperature asymmetry for hot plasma conditions; it
is the latter consequence that may lead to qualitatively new
and interesting phenomena in such a state of matter.

As a general conclusion we must state that the results of
Sec. V are valid only for cold plasmas. For initially hot plas-
mas one must take into account the temperature inhomoge-
neity effects �discussed earlier in the paper� that change the
nature of the nonlinearity and hence the localization charac-
teristics of the em waves. However it is worth mentioning
that the main property of density bunching and energy local-
ization is always there in pair plasmas with different type
initial asymmetries; it is just the character of localization that
changes with origin of the asymmetry.

VI. SUMMARY AND CONCLUSIONS

The main result of this paper is that a fundamentally new
type of saturating focusing-defocusing nonlinearity is de-
rived for a physical system. This composite nonlinearity
originating in a small temperature asymmetry in the constitu-
ent fluids of a pair plasma promises the existence of interest-
ing structures that intense electromagnetic waves can acquire
in such plasmas. We have discussed an illustrative example
where different parts of a high amplitude pulse are effected
differently—the simultaneous expansion of the peak region
and scrunching of the wings imparts a flat top shape to the
pulse. Most consequences of this type of nonlinearity are yet
to be worked out.
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